
Obfuscator (3.5.*)

Technical Documentation

Copyright © 2020 Beebyte Limited
All Rights Reserved

Table of Contents
Best Practices..4

Buttons...4
Animation Clips...4
Methods...4
Check your protection..5
IL2CPP...5

Configuration..6
Assemblies...6

Obfuscate all assembly definitions (2017.3 onwards)..6
Assemblies..6
Compiled Assemblies..6
Extra Assembly Directories..6

Rename..7
Include enum constants...7
Strip Namespaces..8

MonoBehaviours..9
Include public mono methods...9
Include public mono fields..9
Obfuscate MonoBehaviour Class Names (Unity 2018.2+)..9
Obfuscate MonoBehaviour Class Names (Unity 4.2 - 2018.1)..10
Non-standard Source Paths (Unity 4.2 - 2018.1)..10
Abstract MonoBehaviours (Unity 4.2 – 2018.1)...10

Miscellaneous..11
Add Obfuscation version attribute..11
Progress Bar Detail..11

String obfuscation..12
Obfuscate String Literals..12
Obfuscation Marker Unicode..13
Use RSA..13
RSA Key Length...13
Obfuscate Literals in all Methods...13
Only Obfuscate Literals in Obfuscated Methods..13
Strip Markers on Non-Obfuscated Literals...14

Fake Code..14
Add fake code...14
Min false methods per class..15
Max false methods per class...15
Max instructions for cloning...15

Naming Policies...15
Unicode start in decimal..15
N, where Number of characters = (2^N)...15
Hash Salt...16
Regenerate Hash Salt Every Build..16

Name Mapping History...16
Create name translation file..16
Name Translation File...16
Include Hash Salt..16

Copyright © 2020 Beebyte Limited
All Rights Reserved

Reverse arrow order per line...17
Name padding delimiter..17
Translate fake methods..17

Reflection and RPC...18
Search for Unity reflection methods...18
Obfuscate Unity reflection methods..18
Obfuscate and replace literals for RPC methods...18
Alternate RPC Annotations...18
Replace literals even on skipped classes...19
Replace Literals...19

Deletion..20
Attributes to remove if obfuscated member..20

Preservation...21
Only Obfuscate Specified Namespaces..21
Obfuscate Namespaces Recursively...21
Obfuscate Namespaces..21
Skip Namespaces Recursively..21
Skip Namespaces..22
Skip Classes..22
Unity Methods...22
Preserve Prefixes...23

Alternative Attribute Names..24
Attributes..25

.NET Framework...25
Beebyte.Obfuscator..25

Asset Compatibility..27
Anti-Cheat Toolkit...27
NGUI 2..27
Behaviour Designer...27
Odin...28

AOT Generation to avoid code stripping..28
Editor Windows Serialization...29
Serializer...29

UFPS..30
Photon..31

Troubleshooting..32
Parts of my game no longer works!...32
AssemblyResolutionException..33
Moving file failed..34
MonoSymbolFileException...35
It takes too long to obfuscate in the build process...36
Messages sent from Android aren't working...37
I need anonymous classes to be skipped..38

Copyright © 2020 Beebyte Limited
All Rights Reserved

Best Practices
Buttons
For stronger obfuscation, consider assigning button clicks programmatically:
using UnityEngine;
using UnityEngine.UI;
using Beebyte.Obfuscator;
public class Buds : MonoBehaviour
{
 public Button Button;
 public void Start()
 {
 Button.onClick.AddListener(CodedClick);
 }

 //Assigned in the Start() method
 private void CodedClick() //This gets obfuscated
 {
 Debug.Log("Coded Click");
 }

 // Assigned through the inspector within On Click () +
 // so requires [SkipRename] when obfuscating public mono methods
 [SkipRename]
 public void InspectorClick() //Visible
 {
 Debug.Log("Inspector click");
 }
}

In this example 'CodedClick' will be obfuscated.

Animation Clips
In the same way as buttons, consider adding these programmatically using
AnimationClip.AddEvent(AnimationEvent evt).

Otherwise if assigned through the Unity Inspector, please remember to annotate the methods with
[SkipRename]

Methods
More methods result in better obfusation. Following good software practices such as S.O.L.I.D. will
not only improve maintainability of your code, but will be tougher to reverse engineer.

Copyright © 2020 Beebyte Limited
All Rights Reserved

https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)

Check your protection
If your build target contains DLLs then consider using an assembly inspector to verify you're happy
with the level of obfuscation and/or tweak Obfuscator options to improve it.

There are many different assembly inspectors available. Examples include DotPeek (by JetBrains &
free) and ILSpy (open-source).

If you're targetting multiple build targets in a cloud environment or have a customised build
process then this check is strongly recommended.

IL2CPP

• A simple way to see effects of obfuscation is to view the global-metadata.dat file in a text
editor and search for the names of your methods

• There are no additional steps required to instruct the Obfuscator to obfuscate IL2CPP builds

• Be aware that depending on the Unity version and build target the assemblies in
Library/ScriptAssemblies/ will not be obfuscated. To see the obfuscated form then look at
the ones in Library/PlayerDataCache/Data/Managed/ or alternatively

• You could also have a peek at Classes/Native/Bulk_Assembly-CSharp_0.cpp to see the
obfuscation in action.

Copyright © 2020 Beebyte Limited
All Rights Reserved

Configuration
Assemblies

Obfuscate all assembly definitions (2017.3 onwards)

• Significantly strengthens obfuscation when enabled.

• This is an alternative to specifying each assembly definition class in the 'assemblies' list.

Assemblies

• A list of assemblies to be obfuscated that are first created by the Unity build process.

• The file extension must be included.

• e.g.:

◦ Assembly-CSharp.dll

◦ MyAssemblyDefinitionName.dll

Compiled Assemblies

• A list of assemblies to be obfuscated that have been pre-compiled before executing a build.

• The file extension must be included.

• e.g. if you compile a DLL called Wheel through your IDE and place it in the Assets folder
then this list would contain Wheel.dll

Extra Assembly Directories

• If you have an AssemblyResolutionException, find the referenced DLL on your machine and
add the directory of the DLL to this list. The Obfuscator will then check this directory when
trying to locate the DLL as part of the build process.

Copyright © 2020 Beebyte Limited
All Rights Reserved

Rename

• Significantly strengthens obfuscation when enabled.

• Given only the obfuscated DLL, it is near impossible to reverse engineer the original names.

• Given the obfuscated DLL and the 'Random seed' (Naming Policies) a hacker would need to
guess names, hash them, then search the code to see if those hashes are used anywhere. It
is near impossible to return the original name without this guessing step.

• Enabling a member type (classes, methods etc) will always obfuscate private instances of
that type unless the Obfuscator detects it would cause a conflict.

• Enabling 'Protected' will obfuscate protected instances.

• Enabling 'Public' will obfuscate public instances.

Include enum constants

• Strengthens obfuscation when enabled.

• Be careful if you have code like the following:

 public class Booster {
 private readonly Fuel _fuel;

 public Booster(Fuel fuel) {
 _fuel = fuel;
 }

 public void Ignite() {
 // Ignited]][[][[[[[][[][][[]]][[[[[[]][]]]][]][][[]][[[[booster!
 LogFrame.WriteMessage("Ignited " + _fuel + " booster!");
 }
 }

Copyright © 2020 Beebyte Limited
All Rights Reserved

Strip Namespaces

• Strengthens obfuscation when enabled by moving classes into the default namespace.

• 'Skip Namespaces' is always searched before 'Strip Namespaces' is applied.

• Having two classes with the same name in two different namespaces is allowed – the
Obfuscator will assign unique names to avoid any conflict.

Copyright © 2020 Beebyte Limited
All Rights Reserved

MonoBehaviours

Include public mono methods
• Strengthens obfuscation when enabled.

• For public methods on MonoBehaviour objects to be obfuscated, this option must be
enabled in addition to Rename->Methods->Public.

• Typically you want to enable this but be prepared to use [SkipRename] on methods that
have been selected within the Unity Inspector, i.e. Button Clicks and animation clip
methods.

Include public mono fields
• Strengthens obfuscation when enabled.

• Streamed assets require this to be disabled. Alternatively annotate streamed asset fields
with [SkipRename].

Obfuscate MonoBehaviour Class Names (Unity 2018.2+)
• Significantly strengthens obfuscation when enabled.

• When enabled, obfuscates classes derived from MonoBehaviour.

• Streamed classes will not work with this option enabled unless you annotate them with
[SkipRename].

• This obfuscation is only applied for standalone builds (i.e. Windows, Linux, MacOS)

Copyright © 2020 Beebyte Limited
All Rights Reserved

Obfuscate MonoBehaviour Class Names (Unity 4.2 - 2018.1)
• Significantly strengthens obfuscation when enabled.

• When enabled, obfuscates classes derived from MonoBehaviour.

• Streamed classes will not work with this option enabled unless you annotate them with
[SkipRename].

• Precompiled DLLs containing MonoBehaviours will not be renamed with this feature. They
will be treated as though annotated with [SkipRename]. Consider using Unity's Assembly
Definition files instead and adding the assembly reference to temporaryDLLs instead of
permanentDLLs in Config.cs.

• This is the only option that has to touch the original source files (renaming), but will restore
them after the build.

• In the event of a failed build, the sources are restored.

• In the event of a catastrophic event where the Unity IDE closes, the sources are restored
when the project is next opened within the Unity IDE.

• Make a backup of your project before enabling this option for the first time.

• A file called _monoBehaviourTranslations will be temporarily created in the root of the
project during this build process, and removed on source file restoration.

Non-standard Source Paths (Unity 4.2 - 2018.1)
• Used to instruct the Obfuscator where to find certain MonoBehaviours if it gets confused.

• Leave this empty unless prompted by the Obfuscator when building.

Abstract MonoBehaviours (Unity 4.2 – 2018.1)
• Holds a list of abstract MonoBehaviours that can't be renamed.

Copyright © 2020 Beebyte Limited
All Rights Reserved

https://docs.unity3d.com/Manual/ScriptCompilationAssemblyDefinitionFiles.html
https://docs.unity3d.com/Manual/ScriptCompilationAssemblyDefinitionFiles.html

Miscellaneous

Add Obfuscation version attribute

• Prevents a DLL from being obfuscated twice which would otherwise cause many things to
stop working.

• If you have a custom build script that launches obfuscation, it's recommended to enable
this. Otherwise it can be safely disabled.

Progress Bar Detail

• Shows the obfuscation status during a build.

• The "Detailed" setting has been known to increase the build time of large projects by
around 40% but provides the most informative progress.

Copyright © 2020 Beebyte Limited
All Rights Reserved

String obfuscation

Obfuscate String Literals

• Strengthens obfuscation when enabled and annotations are present in your code

• There are two ways to obfuscate literals

◦ [ObfuscateLiterals] on a method (recommended):
 [ObfuscateLiterals]
 private string DescribeAmountRemaining() {
 if (_amountRemaining <= 0) {
 return "Empty";
 }
 if (_amountRemaining >= 100) {
 return "Full";
 }
 return _amountRemaining + "%";
 }

◦ Using a marker:

 private string DescribeAmountRemaining() {
 if (_amountRemaining <= 0) {
 return "^Empty^";
 }
 if (_amountRemaining >= 100) {
 return "^Full^";
 }
 return _amountRemaining + "^%^";
 }

• String literals obfuscation (two-way obfuscation) is not as strong as member renaming
(one-way obfuscation).

• Given only the obfuscated DLL it is possible to reverse engineer the original string.

• The application needs to read the original string (two-way obfuscation) so a hacker could, in
theory, apply the same technique to read it too. Original source class and method names
are not required by the application and so a one-way obfuscation is applied to those.

• Caching is NOT applied to string obfuscation due to security considerations when memory
is dumped.

Copyright © 2020 Beebyte Limited
All Rights Reserved

Obfuscation Marker Unicode
• If using a marker to obfuscate, the marker can be changed using this value.

• The value is in decimal notation

• The default value is 94: ^

Use RSA
• Strengthens obfuscation when enabled.

• In theory this requires more CPU to run, but in the majority of cases it is imperceptible.

• When enabled, the length of the obfuscated byte arrays are the length of the string
rounded to the nearest (keyLength / 8). This makes it hard to guess which string is being
obfuscated based on its length alone.

• When disabled, the length of the obfuscated byte arrays are equal to the length of the
string.

• When disabled, no cryptographic libraries are used for string obfuscation.

RSA Key Length
• Slightly strengthens obfuscation when using higher lengths.

• A higher value typically means more bytes are used, so it's less clear which strings are being
obfuscated.

Obfuscate Literals in all Methods
• Strengthens obfuscation when enabled.

• Equivalent to annotating every method with [ObfuscateLiterals]

Only Obfuscate Literals in Obfuscated Methods
• Weakens obfuscation when enabled.

• When enabled literals that would normally be obfuscated will not be obfuscated if its
parent method is excluded from obfuscation.

Copyright © 2020 Beebyte Limited
All Rights Reserved

Strip Markers on Non-Obfuscated Literals
• If enabled then any string that starts and ends with the obfuscation marker unicode

character will have that character removed from both ends.

• This is to allow disabling of string obfuscation without the need to change all occurancies of
the obfuscation character within your source code.

• If you have never used string marker obfuscation and never intend to, you can safely
disable this option.

Fake Code

Add fake code

• Strengthens obfuscation when enabled.

• Increases file size.

• Increases obfuscation build time.

• Does not change the code flow.

• Clones existing methods and subtly modifies the copy in ways to misdirect people.

Copyright © 2020 Beebyte Limited
All Rights Reserved

Min false methods per class
• A class capable of having fake methods will attempt to have this minimum number of

cloned methods.

• The recommendation is to stick with the default value.

Max false methods per class
• A lower value reduces file size and build time.

• A higher value can increase security, but benefits soon become negligable.

• A single class will not exceed this number of injected fake methods.

• The recommendation is to stick with the default value.

Max instructions for cloning
• Another way to limit the filesize and build time, useful if you have only a few large

methods.

• The recommendation is to stick with the default value.

Naming Policies

Unicode start in decimal
• Strengthens obfuscation when changed to unusual characters.

• The value is in decimal notation.

• The default value is 65 'A'.

• Some special unicode values can't be input to avoid lots of things breaking.

• Be careful changing this if you also use the 'Obfuscate MonoBehaviour Class Name' feature,
since part of that feature involves temporarily renaming files to names using these
characters. Some older or uncommon operating systems might not like unusual characters,
however many will accept them.

N, where Number of characters = (2^N)
• Strengthens obfuscation when lowered.

• Lowering the value increases the length of obfuscated names and reduces the number of
different characters used.

• Seeing [[]]]]][[]]][[][]]][[]]]]]]]][]][[[[][]][]]][][(character 91, N = 1) is visually much harder to
recognise than AGTNEHWK (character 65, N = 4)

• The default value is currently 4, but may change to 1 in a future release.

Copyright © 2020 Beebyte Limited
All Rights Reserved

Hash Salt
• Randomly generated when the Obfuscator is installed.

• The value directly changes obfuscated names.

• A team of developers using the same salt building the same source code will generate DLLs
that have the same obfuscated names.

• The salt is printed within created 'nameTranslation.txt' files unless configured otherwise
(See Name Mapping History).

• The salt should be at least 16 characters in length using a random mix of characters from a
good set (e.g. [a-zA-Z0-9]). Such a salt would take a dedicated machine (~25,000 USD) by
2020 standards an average of approximately 10 trillion years to brute force!

• Keep the salt private and within your organisation

Regenerate Hash Salt Every Build
• If enabled a new hash salt is randomly chosen each time a build is performed.

• If you don't need the Obfuscator to be idempotent then you might as well enable this.

Name Mapping History

Create name translation file
• Creates a file in the root of the project containing the seed used along with a mapping of

newly obfuscated names to old.

• Required to translate stack traces reported by your clients.

Name Translation File
• The name of the name translation file!

Include Hash Salt
• If enabled, the hash salt will be printed on the header line '#Hashes'

Copyright © 2020 Beebyte Limited
All Rights Reserved

Reverse arrow order per line
• If enabled, mappings are new -> old

• If disabled, mapping are old -> new

• This was a backwards compatibility feature added for customers who had already started to
write automated stack trace parsing tools.

Name padding delimiter
• Only change this if you intend to create a tool that parses stack traces.

• It provides a way for an automated tool to recognise a string that should be translated.

• The default value is 0

• Changing this can cause issues with <Insert issue>

Translate fake methods
• If enabled the names of injected fake code is also shown in nameTranslation.txt.

• Since fake code would never normally be executed, it's common to leave this option
disabled.

Copyright © 2020 Beebyte Limited
All Rights Reserved

Reflection and RPC

Search for Unity reflection methods
• Prevents runtime errors when enabled.

• Unity reflection methods are methods such as StartCoroutine that take a string and look for
a method in your code with the same name.

• This option may be removed in the future (with a default of enabled).

Obfuscate Unity reflection methods

• Strengthens obfuscation when enabled.

Obfuscate and replace literals for RPC methods
• Strengthens obfuscation when enabled, but may restrict seed changes.

• When disabled, [RPC] annotated methods are not renamed.

• If enabled then changing the random seed would mean old clients won't be able to talk to
newly built servers and visa-versa.

Alternate RPC Annotations
• Some assets provide their own annotations that act like [RPC]. This is a way to tell the

Obfuscator to treat such annotations in the same way it handles [RPC].

Copyright © 2020 Beebyte Limited
All Rights Reserved

Replace literals even on skipped classes
• It's recommended to leave this enabled to protect against runtime errors.

• If disabled and a class annotates a method called 'StartLevel' with
[ReplaceLiteralsWithName], then a string literal of "StartLevel" would only be replaced with
its obfuscated counterpart if the container class would normally be obfuscated too.

• The use cases for wanting this disabled this is very limited.

Replace Literals
• Methods declared here will change any string containing that method name with the

obfuscated counterpart.

• This is used for assets that use reflection to look up methods they've asked you to create in
MonoBehaviours that aren't known to the base MonoBehaviour class.

• This is equivalent to annotating each declared method with [ReplaceLiteralsWithName]

Copyright © 2020 Beebyte Limited
All Rights Reserved

Deletion

Attributes to remove if obfuscated member
• Strengthens Obfuscation when used

• If your code looks like this:

[Custom("Launches Drone")]
private void SomeMethod() { ..

Then adding "Custom" to this list means that it will obfuscate to something like:

private void JEQQKAEFJJ() { ..

i.e. the [Custom] attribute will have been deleted.

• "Custom" will still work even if the attribute class is called CustomAttribute (C# maps
Custom to CustomAttribute and the Obfuscator handles this)

• If SomeMethod() is skipped and not obfuscated then the [Custom] attribute will NOT be
removed.

• This was introduced for Unity's attributes that interact with the Unity Inspector Window or
Menu Bar that took string parameters that described what the method or class did.

• Works for types, methods, parameters, fields, properties, and events.

• Note that Beebyte attributes are always removed.

• [System.Obfuscation.Reflection] attributes are also removed unless their
StripAfterObfuscation property is set to True.

Copyright © 2020 Beebyte Limited
All Rights Reserved

Preservation

Only Obfuscate Specified Namespaces
• When enabled, no namespaces are obfuscated apart from those declared in 'Obfuscate

Namespaces'.

• It can be useful if you have a gigantic project and want to gradually introduce obfuscation.

Obfuscate Namespaces Recursively
• When enabled, child namespaces are also obfuscated.

Obfuscate Namespaces
• The list of namespaces that will be obfuscated.

• If you only want to obfuscate the default namespace, use the hyphon/minus '-' character.

Skip Namespaces Recursively

•
•
•
•
•
•
•
•
•
•

When enabled, child namespaces are also skipped.

•
•
•
•
•
•
•
•
•

Copyright © 2020 Beebyte Limited
All Rights Reserved

• When disabled, only exact namespaces are skipped

Skip Namespaces

• The list of namespaces that will not be obfuscated.

• If you want to exclude the default namespace, use the hyphon/minus '-' character.

Skip Classes
• A list of classes that will not be obfuscated.

• Equivalent to annotating the class with [Skip].

Unity Methods
• Methods declared here that exist on a class derived from MonoBehaviour will not be

obfuscated.

• Equivalent to annotating the declared methods with [SkipRename] if they are on a class
derived from MonoBehaviour.

• Only event style methods that are found using reflection should be declared here. There is
no need (but no harm) in declaring methods that are extended from the base class.

Copyright © 2020 Beebyte Limited
All Rights Reserved

Preserve Prefixes

• Methods starting with the declared strings will use them as a mask when obfuscating.

• Useful for assets that expect methods to start with a particular string.

Copyright © 2020 Beebyte Limited
All Rights Reserved

Alternative Attribute Names
• Any attribute declared in one of the lists will be treated as the Beebyte.Obfuscator attribute

counterpart.

• e.g. Adding JsonProperty to the Skip Rename list will mean you no longer have to annotate
each property with [SkipRename] if [JsonProperty] was already present.

Copyright © 2020 Beebyte Limited
All Rights Reserved

Attributes
.NET Framework

[System.Reflection.Obfuscation]

• Equivalent to [Skip]

[System.Reflection.Obfuscation(ApplyToMembers=false)]

• Equivalent to [SkipRename]

[System.Reflection.Obfuscation(Exclude=false)]

• Instructs the Obfuscator to obfuscate the annotated target where it might not have
otherwise done so.

• It is ignored if the Obfuscator knows renaming will definitely cause failures.

Beebyte.Obfuscator

[Skip]

• Instructs the Obfuscator not to obfuscate the target or any of its children.

• Usable on classes, methods, interfaces, structs, fields, parameters, events, enums,
properties, and delegates.

• When used on a class, it's equivalent to declaring it in the "Skip Classes" list in options.

[SkipRename]

• Instructs the Obfuscator not to obfuscate the target's name, however children may be
obfuscated.

• Usable on classes, methods, interfaces, structs, fields, parameters, events, enums,
properties, and delegates.

Copyright © 2020 Beebyte Limited
All Rights Reserved

[ReplaceLiteralsWithName]

• Instructs the Obfuscator to replace all string literals within the obfuscated assemblies that
match the target's name with the newly obfuscated name.

• Usable on classes, methods, interfaces, structs, fields, properties, events, enums, and
delegates.

[Rename]

• Instructs the Obfuscator to change the target's name to the argument passed into this
annotation.

• Usable on classes, methods, interfaces, structs, fields, properties, enums, and delegates.

[ObfuscateLiterals]

• Instructs the Obfuscator to apply string obfuscation on all string literals declared within the
annotated method.

• Usable only on methods.

[DoNotFake]

• Instructs the Obfuscator to not spawn fake methods for the given target.

• Usable on classes or individual methods.

• You might want to use this on a single gigantic method so that you can benefit from having
many fake methods for smaller methods without too much impact on file size. However
you should strongly consider refactoring that large method into new classes and methods
for cleaner code and stronger obfuscation results.

[SuppressLog]

• Prevents the specified warning message from being output by the Obfuscator for the target
it's applied on.

Copyright © 2020 Beebyte Limited
All Rights Reserved

Asset Compatibility
Beebyte is not affiliated with these products or companies.

Anti-Cheat Toolkit
This plugin focuses on preventing code tampering and memory manipulation and complements
the Obfuscator well. No changes are needed and ACTK_EXCLUDE_OBFUSCATION does not need to
be defined, so simply install and enjoy!

NGUI 2

No action required.

Default settings within Obfuscator options already handle this asset from the following method
names being added to the "Replace Literals" section:

 OnHover
 OnSelect
 OnInput
 OnScroll
 OnKey
 OnPress
 OnDrag
 OnClick
 OnDoubleClick
 OnDrop
 OnTooltip

Behaviour Designer
 Shared variables need to have the same name, so be careful if you annotate one with
[SkipRename] or [Rename("someCrypticName")] and remember to annotate its other instances
with the same annotation.

 Tasks you create should have their classes annotated with [SkipRename].

 If you use behaviorTree.GetVariable("MyVariable"), or the equivalent Set methods, then you
either need to add [SkipRename] or [ReplaceLiteralsWithName] on the variable definition.

Copyright © 2020 Beebyte Limited
All Rights Reserved

Odin

AOT Generation to avoid code stripping
If you have AOT Generation enabled to protect against asset stripping then you may come across
the following error:

IL2CPP error for method 'System.Void
Sirenix.Serialization.AOTGenerated.PreventCodeStrippingViaReferences::.cctor()'
in assembly '<project_dir>\Temp\StagingArea\assets\bin\Data\Managed\
Sirenix.Serialization.AOTGenerated.dll'
Additional information: Exception has been thrown by the target of an
invocation.
...
...
...
Unhandled Exception:
System.Reflection.TargetInvocationException: Exception has been thrown by the
target of an invocation. ---> System.InvalidOperationException: Unable to
resolve a reference to the type 'SomeType' in the assembly
'Sirenix.Serialization.AOTGenerated, Version=0.0.0.0, Culture=neutral,
PublicKeyToken=null'. Does this type exist in a different assembly in the
project?

This is because Odin generates a DLL containing original references to your types and the
Obfuscator was not instructed to obfuscate this generated DLL along with your normal ones.

To resolve this you must do one of two things.
If you have configured Odin to delete this DLL after building (preferred) then
add Plugins/Sirenix/Assemblies/AOT/Sirenix.Serialization.AOTGenerated.dll to Assemblies within
Obfuscator's options:

Alternatively if you have configured Odin to not delete this generated DLL on
build then you must instead add Plugins/Sirenix/Assemblies/AOT/Sirenix.Serialization.AOTGenerated.dll
to the Compiled Assemblies section:

Copyright © 2020 Beebyte Limited
All Rights Reserved

Editor Windows Serialization
If you make use of Odin's Editor serialization (quite likely if you're using Odin), then as a first pass
it's recommended to disable obfuscation of public fields:

For a more obfuscated solution you will want to re-enable this but preserve the name of any
SerializedMonoBehaviour fields that are serialized by Odin such as bool[,] or Dictionary<a, b> etc.

Additionally, the field names of any classes used as types of SerializedMonoBehaviour fields must
also be preserved. For example:

using System.Collections.Generic;
using Beebyte.Obfuscator;
using Sirenix.OdinInspector;

namespace Astral
{
 public class SolarSystem : SerializedMonoBehaviour
 {
 [SkipRename] // This is required if obfuscating public MonoBehaviour field names
 public Dictionary<string, Planet> planets;
 }

 public class Planet
 {
 [SkipRename] // This is ALWAYS required if obfuscating public fields
 public int Radius;
 }
}

Serializer
If using Odin's SerializationUtility.SerializeValue(..) or SerializationUtility.DeserializeValue(..)
methods, it is important to annotate any serializable classes with [Serializable]. This is because
Odin's serialization mechanism (like many others) embed class and field names into the resulting
binary data file.

[Serializable] will instruct the Obfuscator to skip renaming both class names and field names.

Copyright © 2020 Beebyte Limited
All Rights Reserved

UFPS

 Where you use vp_Timer.CancelAll("SomeMethod"), either add [SkipRename] or
[ReplaceLiteralsWithName] on the SomeMethod definition.

 If you choose to exclude the core UFPS scripts from obfuscation, make sure you add
[SkipRename] on method events that originate from the core UFPS, i.e. If you create a class and
define a method OnStart_Reload, you probably want to use [SkipRename] on that method. Note
that if the class you created explicitly inherits from the original UFPS class then this step is not
required.

Default have been set up within Preserve Prefixes to cater for the UFPS reflection callbacks:
OnMessage_
OnValue_
OnAttempt_
CanStart_
CanStop_
OnStart_
OnStop_
OnFailStart_
OnFailStop_

Copyright © 2020 Beebyte Limited
All Rights Reserved

Photon

 Photon uses ToString() often with its enums, so if you choose to obfuscate enums, make sure to
skip the enums in PhotonNetwork/Enums.cs. For a more obfuscated approach you could annotate
each enum value with [SkipRename] instead.

 Defaults of 'ExitGames' and 'Photon' have been added to the list of Skipped Namespaces.

 For convenience the default settings have been updated to include this list of enums to skip:

 CloudRegionCode
 PhotonNetworkingMessage
 PhotonLogLevel
 PhotonTargets
 CloudRegionFlag
 ConnectionState
 EncryptionMode
 EncryptionDataParameters
 ClientState
 ClientState/JoinType
 DisconnectCause
 ServerConnection
 MatchmakingMode
 JoinMode
 ReceiverGroup
 EventCaching
 PropertyTypeFlag
 LobbyType
 AuthModeOption
 CustomAuthenticationType
 PickupCharacterState
 CharacterState
 OnSerializeTransform
 ViewSynchronization
 OnSerializeRigidBody
 OwnershipOption
 JoinType
 OpJoinRandomRoomParams

 Default options have added PunRPC and Photon.Pun.RPC to the 'Alternate RPC Annotations'
section.

Copyright © 2020 Beebyte Limited
All Rights Reserved

Troubleshooting
Parts of my game no longer works!

If you know the problem relates to a specific plugin, you might consider adding that plugin's
namespace to the list of Skip Namespaces:

This can fix issues where that plugin's code is compiled alongside your project's code. Usually the
plugin relies on reflection in some way.

If you're obfuscating a large complex project, start with only a small set of options enabled (i.e.
start with only obfuscating class names) then gradually re-introduce more options.

Keep in mind you can choose to prevent entire namespaces being obfuscated by using the Skip
Namespaces section in options.

Copyright © 2020 Beebyte Limited
All Rights Reserved

AssemblyResolutionException

This means the Obfuscator could not find the referenced DLL by default. Check the following:

• If you renamed the DLL from its original name, rename it back.

• More likely, you need to tell the Obfuscator where to find this DLL by adding the DLL's
directory to the list of "extraAssemblyDirectories" defined in Obfuscator Options in the
Assemblies section.
The Obfuscator will now consider that directory when looking for referenced assemblies.

• If you use a custom build process other than using the default (Postbuild.cs), make sure you
call Obfuscator.SetExtraAssemblyDirectories(_options.extraAssemblyDirectories) before any
call to Obufscate().

Copyright © 2020 Beebyte Limited
All Rights Reserved

Moving file failed

This can happen when obfuscating MonoBehaviour class names.

Try resetting the name padding delimiter (or change it to a file-format-friendly character):

If the error still occurs then change the character codes too:

Copyright © 2020 Beebyte Limited
All Rights Reserved

MonoSymbolFileException

If you come across this error, please email us with as much information as possible to
support@beebyte.co.uk including your Unity version, build target, and whether it was run in
development mode.

It has been known to occur when the "Obfuscate literals in all methods" option is enabled.

A workaround that might work for you is to edit the Postbuild.cs file and make the following
IgnoreSymbols call:

Obfuscator.IgnoreSymbols(true);
Obfuscator.Obfuscate(dlls, compiledDlls, _options,
EditorUserBuildSettings.activeBuildTarget);

Alternatively, disable the option "Obfuscate literals in all methods".

Copyright © 2020 Beebyte Limited
All Rights Reserved

mailto:support@beebyte.co.uk

It takes too long to obfuscate in the build process

The culprit is almost always "Fake Code". Consider reducing the values within its options, or disable
it.

If it still takes a long time to obfuscate, you can get a clearer idea of the cause by calling
Obfuscator.SetPrintChronology(true) just before calls to Obfuscate() (See Postbuild.cs). Then on
successful builds you will see additional information in the success message:

Copyright © 2020 Beebyte Limited
All Rights Reserved

Messages sent from Android aren't working

If in Java code you have:

then
you
need to annotate the OnSayHello method within your C# project with [SkipRename] to instruct the
Obfuscator to leave that method untouched.

Copyright © 2020 Beebyte Limited
All Rights Reserved

I need anonymous classes to be skipped

In the source code anonymous classes look like the 'anon' variable shown here:

public class NewBehaviourScript : MonoBehaviour
{
 public Text uiTextPanel;

 void Start ()
 {
 var anon = new {count = 1};

 uiTextPanel.text = anon.ToString();
 }
}

When compiled, they'll be given a name like <>__AnonType0`1

If you need these anonymous classes to be skipped, then add the following line to the "Equivalent
Attributes for Skip" section:

System.Runtime.CompilerServices.CompilerGenerated

This works because anonymous classes will have the [CompilerGenerated] attribute applied.

Copyright © 2020 Beebyte Limited
All Rights Reserved

	Best Practices
	Buttons
	Animation Clips
	Methods
	Check your protection
	IL2CPP

	Configuration
	Assemblies
	Obfuscate all assembly definitions (2017.3 onwards)
	Assemblies
	Compiled Assemblies
	Extra Assembly Directories

	Rename
	Include enum constants
	Strip Namespaces

	MonoBehaviours
	Include public mono methods
	Include public mono fields
	Obfuscate MonoBehaviour Class Names (Unity 2018.2+)
	Obfuscate MonoBehaviour Class Names (Unity 4.2 - 2018.1)
	Non-standard Source Paths (Unity 4.2 - 2018.1)
	Abstract MonoBehaviours (Unity 4.2 – 2018.1)

	Miscellaneous
	Add Obfuscation version attribute
	Progress Bar Detail

	String obfuscation
	Obfuscate String Literals
	Obfuscation Marker Unicode
	Use RSA
	RSA Key Length
	Obfuscate Literals in all Methods
	Only Obfuscate Literals in Obfuscated Methods
	Strip Markers on Non-Obfuscated Literals

	Fake Code
	Add fake code
	Min false methods per class
	Max false methods per class
	Max instructions for cloning

	Naming Policies
	Unicode start in decimal
	N, where Number of characters = (2^N)
	Hash Salt
	Regenerate Hash Salt Every Build

	Name Mapping History
	Create name translation file
	Name Translation File
	Include Hash Salt
	Reverse arrow order per line
	Name padding delimiter
	Translate fake methods

	Reflection and RPC
	Search for Unity reflection methods
	Obfuscate Unity reflection methods
	Obfuscate and replace literals for RPC methods
	Alternate RPC Annotations
	Replace literals even on skipped classes
	Replace Literals

	Deletion
	Attributes to remove if obfuscated member

	Preservation
	Only Obfuscate Specified Namespaces
	Obfuscate Namespaces Recursively
	Obfuscate Namespaces
	Skip Namespaces Recursively
	Skip Namespaces
	Skip Classes
	Unity Methods
	Preserve Prefixes

	Alternative Attribute Names

	Attributes
	.NET Framework
	Beebyte.Obfuscator

	Asset Compatibility
	Anti-Cheat Toolkit
	NGUI 2
	Behaviour Designer
	Odin
	AOT Generation to avoid code stripping
	Editor Windows Serialization
	Serializer

	UFPS
	Photon

	Troubleshooting
	Parts of my game no longer works!
	AssemblyResolutionException
	Moving file failed
	MonoSymbolFileException
	It takes too long to obfuscate in the build process
	Messages sent from Android aren't working
	I need anonymous classes to be skipped

