-------------------------------------------------------------------------------- -- Copyright (c) 2015 , 蒙占志(topameng) topameng@gmail.com -- All rights reserved. -- Use, modification and distribution are subject to the "MIT License" -------------------------------------------------------------------------------- local sqrt = math.sqrt local setmetatable = setmetatable local rawget = rawget local math = math local acos = math.acos local max = math.max local Vector2 = {} local get = tolua.initget(Vector2) Vector2.__index = function(t,k) local var = rawget(Vector2, k) if var == nil then var = rawget(get, k) if var ~= nil then return var(t) end end return var end Vector2.__call = function(t, x, y) return setmetatable({x = x or 0, y = y or 0}, Vector2) end function Vector2.New(x, y) return setmetatable({x = x or 0, y = y or 0}, Vector2) end function Vector2:Set(x,y) self.x = x or 0 self.y = y or 0 end function Vector2:Get() return self.x, self.y end function Vector2:SqrMagnitude() return self.x * self.x + self.y * self.y end function Vector2:Clone() return setmetatable({x = self.x, y = self.y}, Vector2) end function Vector2.Normalize(v) local x = v.x local y = v.y local magnitude = sqrt(x * x + y * y) if magnitude > 1e-05 then x = x / magnitude y = y / magnitude else x = 0 y = 0 end return setmetatable({x = x, y = y}, Vector2) end function Vector2:SetNormalize() local magnitude = sqrt(self.x * self.x + self.y * self.y) if magnitude > 1e-05 then self.x = self.x / magnitude self.y = self.y / magnitude else self.x = 0 self.y = 0 end return self end function Vector2.Dot(lhs, rhs) return lhs.x * rhs.x + lhs.y * rhs.y end function Vector2.Angle(from, to) local x1,y1 = from.x, from.y local d = sqrt(x1 * x1 + y1 * y1) if d > 1e-5 then x1 = x1/d y1 = y1/d else x1,y1 = 0,0 end local x2,y2 = to.x, to.y d = sqrt(x2 * x2 + y2 * y2) if d > 1e-5 then x2 = x2/d y2 = y2/d else x2,y2 = 0,0 end d = x1 * x2 + y1 * y2 if d < -1 then d = -1 elseif d > 1 then d = 1 end return acos(d) * 57.29578 end function Vector2.Magnitude(v) return sqrt(v.x * v.x + v.y * v.y) end function Vector2.Reflect(dir, normal) local dx = dir.x local dy = dir.y local nx = normal.x local ny = normal.y local s = -2 * (dx * nx + dy * ny) return setmetatable({x = s * nx + dx, y = s * ny + dy}, Vector2) end function Vector2.Distance(a, b) return sqrt((a.x - b.x) ^ 2 + (a.y - b.y) ^ 2) end function Vector2.Lerp(a, b, t) if t < 0 then t = 0 elseif t > 1 then t = 1 end return setmetatable({x = a.x + (b.x - a.x) * t, y = a.y + (b.y - a.y) * t}, Vector2) end function Vector2.LerpUnclamped(a, b, t) return setmetatable({x = a.x + (b.x - a.x) * t, y = a.y + (b.y - a.y) * t}, Vector2) end function Vector2.MoveTowards(current, target, maxDistanceDelta) local cx = current.x local cy = current.y local x = target.x - cx local y = target.y - cy local s = x * x + y * y if s > maxDistanceDelta * maxDistanceDelta and s ~= 0 then s = maxDistanceDelta / sqrt(s) return setmetatable({x = cx + x * s, y = cy + y * s}, Vector2) end return setmetatable({x = target.x, y = target.y}, Vector2) end function Vector2.ClampMagnitude(v, maxLength) local x = v.x local y = v.y local sqrMag = x * x + y * y if sqrMag > maxLength * maxLength then local mag = maxLength / sqrt(sqrMag) x = x * mag y = y * mag return setmetatable({x = x, y = y}, Vector2) end return setmetatable({x = x, y = y}, Vector2) end function Vector2.SmoothDamp(current, target, Velocity, smoothTime, maxSpeed, deltaTime) deltaTime = deltaTime or Time.deltaTime maxSpeed = maxSpeed or math.huge smoothTime = math.max(0.0001, smoothTime) local num = 2 / smoothTime local num2 = num * deltaTime num2 = 1 / (1 + num2 + 0.48 * num2 * num2 + 0.235 * num2 * num2 * num2) local tx = target.x local ty = target.y local cx = current.x local cy = current.y local vecx = cx - tx local vecy = cy - ty local m = vecx * vecx + vecy * vecy local n = maxSpeed * smoothTime if m > n * n then m = n / sqrt(m) vecx = vecx * m vecy = vecy * m end m = Velocity.x n = Velocity.y local vec3x = (m + num * vecx) * deltaTime local vec3y = (n + num * vecy) * deltaTime Velocity.x = (m - num * vec3x) * num2 Velocity.y = (n - num * vec3y) * num2 m = cx - vecx + (vecx + vec3x) * num2 n = cy - vecy + (vecy + vec3y) * num2 if (tx - cx) * (m - tx) + (ty - cy) * (n - ty) > 0 then m = tx n = ty Velocity.x = 0 Velocity.y = 0 end return setmetatable({x = m, y = n}, Vector2), Velocity end function Vector2.Max(a, b) return setmetatable({x = math.max(a.x, b.x), y = math.max(a.y, b.y)}, Vector2) end function Vector2.Min(a, b) return setmetatable({x = math.min(a.x, b.x), y = math.min(a.y, b.y)}, Vector2) end function Vector2.Scale(a, b) return setmetatable({x = a.x * b.x, y = a.y * b.y}, Vector2) end function Vector2:Div(d) self.x = self.x / d self.y = self.y / d return self end function Vector2:Mul(d) self.x = self.x * d self.y = self.y * d return self end function Vector2:Add(b) self.x = self.x + b.x self.y = self.y + b.y return self end function Vector2:Sub(b) self.x = self.x - b.x self.y = self.y - b.y return end Vector2.__tostring = function(self) return string.format("(%f,%f)", self.x, self.y) end Vector2.__div = function(va, d) return setmetatable({x = va.x / d, y = va.y / d}, Vector2) end Vector2.__mul = function(a, d) if type(d) == "number" then return setmetatable({x = a.x * d, y = a.y * d}, Vector2) else return setmetatable({x = a * d.x, y = a * d.y}, Vector2) end end Vector2.__add = function(a, b) return setmetatable({x = a.x + b.x, y = a.y + b.y}, Vector2) end Vector2.__sub = function(a, b) return setmetatable({x = a.x - b.x, y = a.y - b.y}, Vector2) end Vector2.__unm = function(v) return setmetatable({x = -v.x, y = -v.y}, Vector2) end Vector2.__eq = function(a,b) return ((a.x - b.x) ^ 2 + (a.y - b.y) ^ 2) < 9.999999e-11 end get.up = function() return setmetatable({x = 0, y = 1}, Vector2) end get.right = function() return setmetatable({x = 1, y = 0}, Vector2) end get.zero = function() return setmetatable({x = 0, y = 0}, Vector2) end get.one = function() return setmetatable({x = 1, y = 1}, Vector2) end get.magnitude = Vector2.Magnitude get.normalized = Vector2.Normalize get.sqrMagnitude = Vector2.SqrMagnitude UnityEngine.Vector2 = Vector2 setmetatable(Vector2, Vector2) return Vector2