miduo_client/Assets/ManagedResources/~Lua/3rd/luabitop/doc/api.html

338 lines
12 KiB
HTML

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<title>API Functions</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<meta name="Author" content="Mike Pall">
<meta name="Copyright" content="Copyright (C) 2005-2012, Mike Pall">
<meta name="Language" content="en">
<link rel="stylesheet" type="text/css" href="bluequad.css" media="screen">
<link rel="stylesheet" type="text/css" href="bluequad-print.css" media="print">
</head>
<body>
<div id="site">
<a href="http://bitop.luajit.org"><span>Bit<span id="logo">Op</span></span></a>
</div>
<div id="head">
<h1>API Functions</h1>
</div>
<div id="nav">
<ul><li>
<a href="index.html">Lua BitOp</a>
</li><li>
<a href="install.html">Installation</a>
</li><li>
<a class="current" href="api.html">API Functions</a>
</li><li>
<a href="semantics.html">Semantics</a>
</li><li>
<a href="changes.html">Changes</a>
</li><li>
<a href="http://bitop.luajit.org/download.html">Download <span class="ext">&raquo;</span></a>
</li></ul>
</div>
<div id="main">
<p>
This list of API functions is not intended to replace a tutorial.
If you are not familiar with the terms used, you may want to study the
<a href="http://en.wikipedia.org/wiki/Bitwise_operation"><span class="ext">&raquo;</span>&nbsp;Wikipedia
article on bitwise operations</a> first.
</p>
<h2 id="loading">Loading the BitOp Module</h2>
<p>
The suggested way to use the BitOp module is to add the following
to the start of <em>every</em> Lua file that needs one of its functions:
</p>
<pre class="code">
local bit = require("bit")
</pre>
<p>
This makes the dependency explicit, limits the scope to the current file
and provides faster access to the <tt>bit.*</tt> functions, too.
It's good programming practice <em>not</em> to rely on the global variable
<tt>bit</tt> being set (assuming some other part of your application
has already loaded the module). The <tt>require</tt> function ensures
the module is only loaded once, in any case.
</p>
<h2 id="shortcuts">Defining Shortcuts</h2>
<p>
It's a common (but not a required) practice to cache often used module
functions in locals. This serves as a shortcut to save some typing
and also speeds up resolving them (only relevant if called hundreds of
thousands of times).
</p>
<pre class="code">
local bnot = bit.bnot
local band, bor, bxor = bit.band, bit.bor, bit.bxor
local lshift, rshift, rol = bit.lshift, bit.rshift, bit.rol
-- etc...
-- Example use of the shortcuts:
local function tr_i(a, b, c, d, x, s)
return rol(bxor(c, bor(b, bnot(d))) + a + x, s) + b
end
</pre>
<p>
Remember that <b><tt>and</tt></b>, <b><tt>or</tt></b> and <b><tt>not</tt></b>
are reserved keywords in Lua. They cannot be used for variable names or
literal field names. That's why the corresponding bitwise functions have
been named <tt>band</tt>, <tt>bor</tt>, and <tt>bnot</tt>
(and <tt>bxor</tt> for consistency).
<p>
While we are at it: a common pitfall is to use <tt>bit</tt> as the
name of a local temporary variable &mdash; well, don't! :-)
</p>
<h2 id="examples">About the Examples</h2>
<p>
The examples below show small Lua one-liners. Their expected output
is shown after <tt>--&gt;</tt>. This is interpreted as a comment marker
by Lua so you can cut &amp; paste the whole line to a Lua prompt
and experiment with it.
</p>
<p>
Note that all bit operations return <em>signed</em> 32&nbsp;bit numbers
(<a href="semantics.html#range">rationale</a>). And these print
as signed decimal numbers by default.
</p>
<p>
For clarity the examples assume the definition of a helper function
<tt>printx()</tt>. This prints its argument as an <em>unsigned</em>
32&nbsp;bit hexadecimal number on all platforms:
</p>
<pre class="code">
function printx(x)
print("0x"..bit.tohex(x))
end
</pre>
<h2 id="operations">Bit Operations</h2>
<h3 id="tobit"><tt>y = bit.tobit(x)</tt></h3>
<p>
Normalizes a number to the numeric range for bit operations and returns it.
This function is usually not needed since all bit operations already
normalize all of their input arguments. Check the
<a href="semantics.html">operational semantics</a> for details.
</p>
<pre class="code">
print(0xffffffff) --> 4294967295 (*)
print(bit.tobit(0xffffffff)) --> -1
printx(bit.tobit(0xffffffff)) --> 0xffffffff
print(bit.tobit(0xffffffff + 1)) --> 0
print(bit.tobit(2^40 + 1234)) --> 1234
</pre>
<p style="font-size: 80%;">
(*) See the treatment of <a href="semantics.html#hexlit">hex literals</a>
for an explanation why the printed numbers in the first two lines
differ (if your Lua installation uses a <tt>double</tt> number type).
</p>
<h3 id="tohex"><tt>y = bit.tohex(x [,n])</tt></h3>
<p>
Converts its first argument to a hex string. The number of hex digits is
given by the absolute value of the optional second argument. Positive
numbers between 1 and 8 generate lowercase hex digits. Negative numbers
generate uppercase hex digits. Only the least-significant 4*|n| bits are
used. The default is to generate 8 lowercase hex digits.
</p>
<pre class="code">
print(bit.tohex(1)) --> 00000001
print(bit.tohex(-1)) --> ffffffff
print(bit.tohex(0xffffffff)) --> ffffffff
print(bit.tohex(-1, -8)) --> FFFFFFFF
print(bit.tohex(0x21, 4)) --> 0021
print(bit.tohex(0x87654321, 4)) --> 4321
</pre>
<h3 id="bnot"><tt>y = bit.bnot(x)</tt></h3>
<p>
Returns the bitwise <b>not</b> of its argument.
</p>
<pre class="code">
print(bit.bnot(0)) --> -1
printx(bit.bnot(0)) --> 0xffffffff
print(bit.bnot(-1)) --> 0
print(bit.bnot(0xffffffff)) --> 0
printx(bit.bnot(0x12345678)) --> 0xedcba987
</pre>
<h3 id="bor"><tt>y = bit.bor(x1 [,x2...])<br>
y = bit.band(x1 [,x2...])<br>
y = bit.bxor(x1 [,x2...])</tt></h3>
<p>
Returns either the bitwise <b>or</b>, bitwise <b>and</b>,
or bitwise <b>xor</b> of all of its arguments.
Note that more than two arguments are allowed.
</p>
<pre class="code">
print(bit.bor(1, 2, 4, 8)) --> 15
printx(bit.band(0x12345678, 0xff)) --> 0x00000078
printx(bit.bxor(0xa5a5f0f0, 0xaa55ff00)) --> 0x0ff00ff0
</pre>
<h3 id="lshift"><tt>y = bit.lshift(x, n)<br>
y = bit.rshift(x, n)<br>
y = bit.arshift(x, n)</tt></h3>
<p>
Returns either the bitwise <b>logical left-shift</b>,
bitwise <b>logical right-shift</b>, or bitwise <b>arithmetic right-shift</b>
of its first argument by the number of bits given by the second argument.
</p>
<p>
Logical shifts treat the first argument as an unsigned number and shift in
0-bits. Arithmetic right-shift treats the most-significant bit
as a sign bit and replicates it.<br>
Only the lower 5&nbsp;bits of the shift count are used
(reduces to the range [0..31]).
</p>
<pre class="code">
print(bit.lshift(1, 0)) --> 1
print(bit.lshift(1, 8)) --> 256
print(bit.lshift(1, 40)) --> 256
print(bit.rshift(256, 8)) --> 1
print(bit.rshift(-256, 8)) --> 16777215
print(bit.arshift(256, 8)) --> 1
print(bit.arshift(-256, 8)) --> -1
printx(bit.lshift(0x87654321, 12)) --> 0x54321000
printx(bit.rshift(0x87654321, 12)) --> 0x00087654
printx(bit.arshift(0x87654321, 12)) --> 0xfff87654
</pre>
<h3 id="rol"><tt>y = bit.rol(x, n)<br>
y = bit.ror(x, n)</tt></h3>
<p>
Returns either the bitwise <b>left rotation</b>,
or bitwise <b>right rotation</b> of its first argument by the
number of bits given by the second argument.
Bits shifted out on one side are shifted back in on the other side.<br>
Only the lower 5&nbsp;bits of the rotate count are used
(reduces to the range [0..31]).
</p>
<pre class="code">
printx(bit.rol(0x12345678, 12)) --> 0x45678123
printx(bit.ror(0x12345678, 12)) --> 0x67812345
</pre>
<h3 id="bswap"><tt>y = bit.bswap(x)</tt></h3>
<p>
Swaps the bytes of its argument and returns it. This can be used
to convert little-endian 32&nbsp;bit numbers to big-endian 32&nbsp;bit
numbers or vice versa.
</p>
<pre class="code">
printx(bit.bswap(0x12345678)) --> 0x78563412
printx(bit.bswap(0x78563412)) --> 0x12345678
</pre>
<h2 id="nsievebits">Example Program</h2>
<p>
This is an implementation of the (na&iuml;ve) <em>Sieve of Eratosthenes</em>
algorithm. It counts the number of primes up to some maximum number.
</p>
<p>
A Lua table is used to hold a bit-vector. Every array index has
32&nbsp;bits of the vector. Bitwise operations are used to access and
modify them. Note that the shift counts don't need to be masked
since this is already done by the BitOp shift and rotate functions.
</p>
<pre class="code">
local bit = require("bit")
local band, bxor = bit.band, bit.bxor
local rshift, rol = bit.rshift, bit.rol
local m = tonumber(arg and arg[1]) or 100000
if m < 2 then m = 2 end
local count = 0
local p = {}
for i=0,(m+31)/32 do p[i] = -1 end
for i=2,m do
if band(rshift(p[rshift(i, 5)], i), 1) ~= 0 then
count = count + 1
for j=i+i,m,i do
local jx = rshift(j, 5)
p[jx] = band(p[jx], rol(-2, j))
end
end
end
io.write(string.format("Found %d primes up to %d\n", count, m))
</pre>
<p>
Lua BitOp is quite fast. This program runs in less than
90&nbsp;milliseconds on a 3&nbsp;GHz CPU with a standard Lua installation,
but performs more than a million calls to bitwise functions.
If you're looking for even more speed,
check out <a href="http://luajit.org/"><span class="ext">&raquo;</span>&nbsp;LuaJIT</a>.
</p>
<h2 id="caveats">Caveats</h2>
<h3>Signed Results</h3>
<p>
Returning signed numbers from bitwise operations may be surprising to
programmers coming from other programming languages which have both
signed and unsigned types. But as long as you treat the results of
bitwise operations uniformly everywhere, this shouldn't cause any problems.
</p>
<p>
Preferably format results with <tt>bit.tohex</tt> if you want a
reliable unsigned string representation. Avoid the <tt>"%x"</tt> or
<tt>"%u"</tt> formats for <tt>string.format</tt>. They fail on some
architectures for negative numbers and can return more than 8 hex digits
on others.
</p>
<p>
You may also want to avoid the default number to string coercion,
since this is a signed conversion.
The coercion is used for string concatenation and all standard library
functions which accept string arguments (such as <tt>print()</tt> or
<tt>io.write()</tt>).
</p>
<h3>Conditionals</h3>
<p>
If you're transcribing some code from C/C++, watch out for
bit operations in conditionals. In C/C++ any non-zero value
is implicitly considered as "true". E.g. this C code:<br>
<tt>&nbsp;&nbsp;if (x & 3) ...</tt><br>
must not be turned into this Lua code:<br>
<tt>&nbsp;&nbsp;if band(x, 3) then ... -- <em>wrong!</em></tt>
</p>
<p>
In Lua all objects except <tt>nil</tt> and <tt>false</tt> are
considered "true". This includes all numbers. An explicit comparison
against zero is required in this case:<br>
<tt>&nbsp;&nbsp;if band(x, 3) ~= 0 then ... -- <em>correct!</em></tt>
</p>
<h3>Comparing Against Hex Literals</h3>
<p>
Comparing the results of bitwise operations (<em>signed</em> numbers)
against hex literals (<em>unsigned</em> numbers) needs some additional care.
The following conditional expression may or may not work right,
depending on the platform you run it on:<br>
<tt>&nbsp;&nbsp;bit.bor(x, 1) == 0xffffffff</tt><br>
E.g. it's never true on a Lua installation with the default number type.
Some simple solutions:
</p>
<ul>
<li>Either never use hex literals larger than 0x7fffffff in comparisons:<br>
<tt>&nbsp;&nbsp;bit.bor(x, 1) == -1</tt></li>
<li>Or convert them with <tt>bit.tobit()</tt> before comparing:<br>
<tt>&nbsp;&nbsp;bit.bor(x, 1) == bit.tobit(0xffffffff)</tt></li>
<li>Or use a generic workaround with <tt>bit.bxor()</tt>:<br>
<tt>&nbsp;&nbsp;bit.bxor(bit.bor(x, 1), 0xffffffff) == 0</tt></li>
<li>Or use a case-specific workaround:<br>
<tt>&nbsp;&nbsp;bit.rshift(x, 1) == 0x7fffffff</tt></li>
</ul>
<br class="flush">
</div>
<div id="foot">
<hr class="hide">
Copyright &copy; 2012 Mike Pall
<span class="noprint">
&middot;
<a href="contact.html">Contact</a>
</span>
</div>
</body>
</html>